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Pixel Trigger Queuing Analysis and Behavioral Simulations 
 
 
1 Some System definitions 
 
1.1 Introduction 
 
The following document summarizes the results obtained by modeling and simulating part of the Level 1 
Pixel Trigger Processor for BTeV. The portion modeled and simulated corresponds to the Trigger section 
that process data from a Pixel Detector Triplet. A Pixel Detector Triplet is depicted in Figure 2. 
 
The Level 1 Pixel Trigger architecture has been described elsewhere [ref]. In the current analysis it is 
assumed that the Level 1 Pixel Trigger Processor is subdivided in a number of parallel branches called 
highways (see Figure 3). The mapping of the Pixel data onto the highways is based on the data’s Time Stamp 
(TS). For instance, if the number of highways is N, highway1 will receive data with Time Stamps 
1,N+1,2N+1,…, highway2 will receive 2,N+2,2N+2,… and so forth. It is assumed that data acquired at any 
TS is uncorrelated with other TS, hence can be processed independently.  
 
 
1.2 The Pixel Detector structure 
 
The data flow analysis and simulations make extensive use of Pixel Simulation Files. These files are Geant 
simulations of the BTeV detector [ref Penny]. The particular files used for the Trigger data flow simulations 
provide information of 3 complete Pixel Stations (N°: 15, 16, and 17). The stations are laid out as shown in 
Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Pixel Detector Triplet 

 
A Pixel Station is composed of two Half Pixel Stations. Each Half Station has one half of a bend view 
detector side and one half of a non-bend view detector side mounted on the same mechanical substrate. They 
make a Pixel Half Station. This two half detector planes, the bend and the non bend views, are at about 
0.57cm apart. The other Half Station that completes the Station is shifted about 2.25cm in Z. For instance, the 
right side Half Station 15 is centered in Z between the left side Half Stations 15 and 16, and so forth. Right 
and left halves of the Pixel Stations keep its separation through the Pixel Preprocessor and Segment Tracker 
modules of the L1 Pixel Trigger Processor as detailed below. 
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1.3 The Input data file: 
The Pixel data was generated using the following parameters [ref]: 
• Pixel size: 50 x 400 microns,  
• Chip size: 22 columns, 128 rows  
• Magnetic field: 1.6T 
• Threshold: 2000 e- 
• Total N° of Bunch Crossings (BCO): 745 and 4410 
• Luminosity: 2* scm 123210 −−  (4 interactions per BCO on average) 
• No of stations simulated: 3, corresponding to the central Triplet of the Pixel Detector (i.e. stations 15, 16, 

and 17). Each Station is double-sided with one bend-view plane and one non-bend-view plane. 
 
1.3.1 Some file statistics 
Two files were used to look at the L1 Trigger data flow. They were both generated using the same 
parameters but the first file has 745 BCOs and the second one has 4410. The Table below summarizes and 
compares some of their characteristics. 
 

Number of simulated BCOs 745 4410 
Total N° of Hits (6 planes): 260,855 1,549,192 
Avg. No of tracks per BCO (1 plane): 25.14 24.84 
Avg. No hits per BCO (1 plane): 58.35 58.60 
Avg. No of hits generated by a track crossing a single sided plane: 2.32 2.35 

 
Figure 2 shows the hit distribution in one Half Plane. 
 

 

Figure 2 Pixel hit distribution in one Half Plane 

The Pixel Preprocessor and Segment Tracker process pixel data coming from a Half Station. The Pixel Data 
goes from the Pixel Detector planes through the Data Combiner boards and into the L1 Trigger. The Pixel 
Detector Data Combiners split the data into a number of highways. As a consequence, the average data rate 
into the L1 Trigger Pixel Preprocessor equals the total average data rate of a Half Pixel plane divided by the 
number of Highways in the system. In the following example we consider that the Pixel Front-ends will spit 
the data into 8 highways. The Pixel Preprocessors process one Highway from one Half Plane. The Segment 
Trackers process 6 data streams, one from each Half Pixel plane which make a Half Station Triplet (as shown 
in Figure 3). The purpose of a Segment Tracker is to find Inner and Outer Triplets of Pixel hits in 3 
consecutive Pixel Detector Stations (actually, Half Stations for the current analysyis). 

Mean~30
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Figure 3 Pixel Front End Highways 
 
 
1.3.2 Front-end bandwidth 
 
The bandwidths are calculated using Half Planes and Half Stations as units. Based on the current file, the 
Half Pixel Plane generates an average of about 30 hits per BCO. If a pixel hit is represented by a 4 byte 
binary word, the total bandwidth per Half Plane is very close to 1Gbyte/s or 8Gb/s. 
 
Since the Pixel Data Combiner boards split the data in 8 highways, the Pixel Preprocessor and Segment 
Trackers receive 6 x 1Gb/s links from the 6 Half Planes which form a Half Station Triplet. 
 
 
1.4 Pixel Preprocessor and Segment Tracker 
 
The Pixel Preprocessor and Segment Tracker have a functional block diagram as shown in Figure 4. A 
Segment Tracker process the data from a Triplet of two-sided Pixel Half-Stations. A Pixel Preprocessor 
module process a single-sided Pixel Half Plane (i.e. the bend view or the non bend view). The block diagram 
in Figure 4 shows 6 Pixel Preprocessor modules and 1 Segment Tracker. Even if the hardware can 
accommodate 6 Pixel Preprocessors and 1 Segment Tracker it still needs to send Pixel Preprocessor data to 
the neighboring Segment Tracker processors because there are up to 3 Segment Tracker processors using the 
same Pixel Preprocessor data. The function of the Segment Preprocessor Interconnection is to distribute the 
data to up to three Segment Tracker stations. Note that data flow and module interconnection links do not 
necessarily imply a one to one physical link.  
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Figure 4 Pixel Preprocessor and Segment Tracker functional block diagram 

 
1.5 The Pixel Front end 
 
The purpose of the current document is to report on the data flow in the Pixel Preprocessor and Segment 
Tracker of L1 Pixel Trigger. However, some modeling and simulation of the Pixel Front End was necessary 
to obtain realistic input data to the L1 Pixel Trigger. The Pixel simulation files provide a set of 
chronologically organized events. A typical line of those files is: 
 

BCO Plane No bend/nonbend Xcoord Ycoord Zcoord No pix hit 
 
However, the data does not arrive chronologically sorted to the Pixel Trigger. The process of data readout in 
the FPIX chips of the Pixel Detector and the process of data readout and highway sorting in the Pixel Data 
Concentrator boards scramble the data.  
 
A more realistic input data stream to the Pixel Trigger is needed in order to have better estimations of timing, 
bandwidths, and queue sizes. 
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The model used for the Pixel Front End is detailed in the Appendix. The Pixel Detector model considers the 
fact that the hit density in the FPIX chips is not uniformly distributed across the Pixel Plane. The hit 
distribution follows an inverse relation of the radial distance to the beam. As a consequence a FPIX chip 
closer to the beam needs more serial communication channels to the Pixel Data Concentrators.  
 
The Pixel Data Concentrator model includes a two-layer switch to route the data from about 84 inputs to 8 
output highways. 
 
 
2 Data flow analysis in the Pixel Preprocessor and Segment Tracker 
 
The purpose of the data flow analysis in the L1 Trigger is to estimate the processing and storage 
requirements, to create a timing and queuing map and to optimize hardware resources. The tools used in the 
data flow analysis are two: queuing theory and behavioral simulations. The validity of the results depends on 
the assumptions made in the modeling and the limitations of the input files used during simulation runs. 
Some safety margins will be used in the design to account for all the unmodeled dynamics. 
 
2.1 The Pixel Preprocessor Architecture 
 
The Trigger Processor system must provide one trigger accept/reject per BCO, on average. This is achieved 
by deeply pipelining the event processing. In order to optimize the throughput a number of buffers (queues) 
are needed. The buffers smooth out data rate fluctuations and diminish processor’s idle times. An 
advantageous feature of the Trigger Processor System is that the data events are independent (i.e. 
uncorrelated) BCO wise. This characteristic facilitates the pipelining of the Trigger Processor by introducing 
many processing units, which are allowed to work, asynchronously, on uncorrelated events. Using queues 
between each two of those parallel processors allows pipelining by decoupling among data flows between 
processors. Figure 5 shows the proposed queuing model of the Pixel Preprocessor. 
 
The first queue in the Pixel Preprocessor is generated by Input Link Receivers. The serial input data from the 
optical links are unserialized and placed in the Input Link buffers.  
 
The Time Stamp (TS) field of the input data is expanded to the full length needed to match the maximum 
trigger latency. Latency here is defined as the time it takes the Trigger System to make a decision on weather 
to accept or reject an event. The Segment Tracker and the Level 1 Buffers need the data sorted by TS. Since 
the data from the Pixel Detector Front Ends come TS unsorted, they are sorted by the TS-ordering module. 
The TS-ordering module transfers the input data from the Input Link Buffers to separate queues where the 
data is ordered by TS. The TS ordering queues are the second set of queues in the Pixel Preprocessor. The 
number of open queues varies according to the TS distribution in the data stream.  
 
The time each TS-ordering queue is open to receive data must be set deterministically based on data 
distribution analysis. Since the input data is chronollogically unsorted  and the event size is variable, the end-
of-event time is unknown. We could wait a “long time” and still not be sure that an event corresponding to a 
certain TS is complete. Hence, the most logical approach is to make the departure time from the TS Ordering 
queues deterministic with respect to its arrival time. The time every data queue must be kept open for 
queuing (i.e. buffering input data of a certain TS) will affect the latency of the Trigger.  
 
The thrird queue in the Pixel Preprocessor model (Figure 5) is the input to the Pixel cluster finder and x-y 
coordinate translator (XYPC). This module reads data from an input buffer and writes grouped pixel clusters 
into an output buffer. The input Pixel data is in row column form, that means the hits are represented by the 
physical row and column address of the Pixel Detector chip which detected those hits. A single track may 
generate more than one hit in the detector chip. The XYPC processor translate a whole group of row column 
hits in a single x-y pair, where x and y are in metric units with respect to the origin of the coordinate system. 
The XYPC reduces the event size by a factor proportional to the average pixel cluster size.  
 
The fourth queue level (Figure 5) is the XYPC output buffer. It holds the x-y cluster data until is ready to be 
processed by the Segment Tracker. The Segment Tracker needs x-y cluster data from the two neighbor 
stations. The three queues generated by stations N-1, N, and N+1 are independent and work asynchronously. 
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Figure 5 Queuing model for data flow analysis 

 
2.2 The Pixel Preprocessor queuing analysis and simulation 
 
2.2.1 The Input Link Buffer 
 
The Input Link Buffer queue is fed by the Optical Receiver electronics. The expected maximum input 
bandwidth of the optical channel is 2 Gb/s. This is equivalent to 250Mby/s or 125 Mega-16bit words/s, which 
is close to the maximum frequency that an FPGA can handle. However, the analysis of the Input simulation 
file shows that the average bandwidth is about 1Gb/s Figure 3. 
 
The processing time on the Input Link Buffer data is deterministic. The algorithm will do the following: 
• Add an expansion field for the data TS.  
• Create an output queue (unless it already exists) and place the data onto that queue based on the data’s 

TS. 
 
Algorithm: 
if queue with data’s TS already exist 
 enqueue data in existing queue with its TS expanded 
else 
 enqueue data in a new queue with its TS expanded 
end  
 
Since the processing time is deterministic, the mean Input Link Buffer output rate, µ, is constant and its 
variance is 0. If µ is greater that the maximum input bandwidth of the optical channel (62.5 Mw/s), the Input 
Link Buffer size needed is just 1 word deep. Note that µ must be, at least, greater than the average input 
bandwidth of the optical channel λ to avoid queue instability. The value of λ is directly proportional 
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to the clock frequency of the input receiver and the Input Link Buffer’s utilization factor. In the later case, 
the Input Link Buffer behaves as a M/D/1 queue. The average queue size can be calculated by 
 

( ) ( ) µ
λρ

ρ
ρ

ρ
ρ

=
−

−
−

= whereNE q 121

2
 

 
For the current simulation the input is distributed as shown in Figure 6. 
 

Figure 6 Pixel Hit arrival distribution in the receiver’s queue 

The arrivals at the receiver queue are exponentially distributed with λ=0.26 hits/clock and the service time 
is µ=0.5 hits/clock. Hence,  

0.53
5.0

26.0 ===
µ
λρ  

The mean queue size becomes, ( ) 82.0=NE q .  
The simulations show that the Input Link Buffer queue does not exceed 1 word deep. 
 

Figure 7 Receiver queue size 
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2.2.2 The TS-ordering queues 
 
During the TS-ordering process queues are born and also die. A new queue is born when the TS event 
ordering process receives data with a TS different to all the ones in the existing queues. A queue dies when 
the data reception for that event is complete. As said above this time must be chosen deterministically. For 
the current example this time will be equal to a complete revolution of the TS clock, that is ~21µs if we roll 
over the TS counter at 159 BCOs, or 33.8µs if we roll over at 256 BCOs. This number is, probably, too 
conservative and adds an unnecessary latency to the data flow. However, it represents a worst case bound. 
The simulations show data inefficiency in the TS-ordering queue as function of the lifetime of the TS queue 
as it is shown below. 
 
The full queueing analysis of the TS event ordering is fairly complex because the process must not only 
consider the queue birth-death distribution but, also, the size distribution of each individual queue. At least, 
we want to find the first moments of a probability distribution function, which defines the existence of each 
specific queue and its size. If we look at individual queues this is a non-stationary problem. However, some 
simplifications can be made. We can define a new process looking only at the number of queues in the TS 
event ordering system, regardless of their sizes. This new process is a well-defined birth-death Markov 
chain. Each state represents the number of existing queues in the system (Figure 8). The process can be 
modeled as a M/D/∞ process. The birth time of the queues are generated by random queue arrivals. The 
interarrival times can be considered exponentially distributed. Queue deaths are caused by complete events 
leaving the system. The interdeparture times are deterministic. 
 
 

Figure 8 TS-ordering state transition model 

 
When the TS ordering process receives data with a new TS, it opens a new queue immediately. That is, it 
starts processing the incoming event without queueing it. The response time of the server increases linearly. 
We can define: 
λ: queue birth rate 
µk = kµ : queue death rate 
 
λ represents the rate at which new queues are generated. From simulations the total Pixel Detector Half 
Station data rate is shown to be 0.9 events/BCO for 4int/BCO and 0.71 events/BCO for 2int/BCO. This rate 
is reduced by the fact that the events are separated along K parallel highways based on TS. Considering 
K=8 and that all TS are equally probable, the data rate in each branch (which is the interesting number 
here) is: 

λ=0.1125 events/BCO. 
In other words, the interarrival time Tλ (i.e the average time between two new queue arrivals) is: 

Tλ = 1/λ = 8.88 BCOs for a luminosity of 4int/BCO. 
 
µ, the service rate, is deterministic and equal to the time we want to wait before considering that the event 
is complete. In this example we set µ to 1/(159 BCOs) or 0.006289 BCO¯¹. 
The M/D/∞ process is always stable. The probability distribution function of this system is given by 
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The average number of queues in the system is given by: 
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( ) queuesNE q 89.17
006289.0
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The average response time of the system to a job, using Little’s formula, is 
( )

BCOs
NE

T q 1591 ===
µλ

, 

which is obvious because the system’s service time is deterministic. 
 
The simulations of 750 and 4410 BCOs show similar results (Figure 9). The number of TS queues open 
increases linearly at the beginning and stabilizes at around 18 queues. If we discard the transitory (the first 
200 BCOs) the average number of queues from simulation is 18.25 and 18.13 respectively. 

 

Figure 9 Simulation of the Number of TS queues. (9.a. 750 BCOs. 9.b. 4100 BCOs) 

 
Before modeling the individual queues some data bounds can be calculated using the same system model. 
If we take into account the average number of queues and the average event size we can expect an Avg. 
Number of data words in all the queues of about: 
Avg. N data = E(Nq) * Avg. event size = 17.89queues * 30 hits = 536 hits. 
This number is too pessimistic because if we take the averages as deterministic parameters (i.e. the system 
has always 18 queues open and the event size is constant at 30hits/event) it implies that all the queues are at 
maximum data capacity. The dynamics of the process tell us that this is not true and the total number of 
words in the queues must be smaller than that. 
 
The analysis of the individual queues can be performed as follow: We can calculate the conditional 
probability distribution function of queue occupancies given that there are n queues and the total sum of 
data words in the queues is m. The selection of data in the queues can be modeled as a generalized 
binomial distribution: 
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Since the input data-stream which generates the queues with individual TS is a Poisson process, 
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Equation (2) is still conditioned by a fixed number of queues in the system. However, it let us study the 
distribution of data in the queues for a certain number of key values. For instance we can let n be the 
average number of queues or some upper bound. 
 
What equation (2) shows is that for a given n the distribution of M1(t)…Mn(t) are independent Poisson 
processes with data rate λt/n. It is also known that as well as the interarrival times in a Poisson Process are 
exponentially distributed, the k-iterated interarrival of an event in (1) follows a k-stage Earlang distribution. 
In our case the distribution is conditioned for n fixed.  
 
We can further simplify the job if we are only interested in the average total number of words in all the TS-
ordering queues. The average number of hits in the TS-ordering queues can be calculated using the average 
number of TS-queues and the average number of hits per event. 
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The simulations of about 750 and 4410 BCOs show an average number of words of 202.8 and 243.03, 
respectively, passed the initial transitory. Clearly the average number of words has not reached full steady 
state after 750 BCOs  

 

Figure 10 Simulation of the Number of words in the TS queues. (10.a. 750 BCOs. 10.b. 4100 BCOs) 

 
2.2.2.1 Time Stamp distribution and inefficiency in the TS-ordering queues 
 
As said, the TS-ordering process opens one individual queue for each TS in the data stream. These queues 
are opened for data collection during a deterministic time. When that time is over, the queue is closed and 
loaded into the XYPC input queue for data grouping. All data having a TS field corresponding to a queue 
that is closed is lost and contributes to inefficiency in the Trigger. This problem can be solved by increasing 
the time the queues are open for data collection, but that, of course, increases the latency of the Trigger. In 
other words, it increases the time an event in the entire BTeV detector must be stored waiting for a trigger 
accept or reject.  
 
The TS scrambling in the data stream is generated by the scattered and asynchronous way in which Pixel 
data is collected and routed to the Trigger system. The analysis of the Pixel Detector’s readout is outside 
the scope of this document. However, we here present a crude simulation to illustrate the problem. In order 
to study the Triger’s Pixel Preprocessor we have generated a simplified model of the Pixel Detector and 
Data Concentrator’s readout. A detailed model can be found in the Apendix.  
 
Figure 11a and b shows the distribution of TS spread (i.e. the distribution of times between the first and the 
last event word with a certain TS). 
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Figure 11 Distribution of TS spread in the data 

 
Figure 12 a and b show the data inefficiency as a function of the time the TS-ordering queues are open for 
data collection. The distributions in Figure 11 a and b correspond to “highwayed” data from 2 of the 6 
planes that feed a Segment Tracker Triplet. It can be noticed that even when the amount of data generated 
for each plane is similar, the distributions are quite different and the minimum time required for data 
collection in the TS-ordering queues varies a lot. 
  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 Inefficiency in the TS-ordering queues 

 
 
2.2.3 The x-y pixel cluster (XYPC) queue 
 
The x-y pixel cluster (XYPC) queue can be modeled as a “bulk” M/M/1 process. In such a process the data 
arrives at the input queue in “bulks”. The x-y translator buffer receives “bulk” arrivals from the output of 
the TS ordering process. Every time the TS ordering process closes a queue, that entire queue is placed in 
the x-y translator buffer. This queue is of variable size and equal to the size of the event that generates it. In 
other words, the x-y translator’s queue is composed by a number of queued customers, which are in turn of 
variable length. This problem is a generalization of the system with an r-stage Earlangian service, in this 
case using variable r. The bulk arrival state-transition diagram can be represented as in Figure 13. 
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Figure 13 XYPC state transition model 

 
A good idea of the bulk size distribution g is given by the event size histogram provided by the simulations 
(Figure 2).  
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The equilibrium equations for the bulk arrival system are: 
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The numbers we are looking for are the size of the x-y translator queue and the average service time. The 
solution of the equilibrium equations involves z-transform methods. The bulk M/M/1 queue size in 
equilibrium suffers a “modulation” effect caused by the changing size of the events (bulks). This 
modulation is reflected in the discrete convolution shown in equation (1). As we know, discrete 
convolutions are much easily handled in the z-transformed plane because they turn into the product of the 
z-transforms. The z-transform of the probability distribution is 
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Here P(z) represents the z-transform of the probability distribution of the x-y transform queue size and G(z) 
is the z-transform of the probability distribution of the bulk size. The utilization factor ρ is defined, as 
usually, ρ=1-po. The value of ρ can, also, be obtained from (2) taking into account that P(1)=1. 

Then,
µ

λρ )1('G= . This result is not surprising because )1('G  is the average bulk size, hence )1('Gλ is the 

average arrival rate and 1/µ is the average service rate. 
 
The average queue size can be directly calculated from (2) using the method of moments. 
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. Of course, this equation depends on the gk distribution.  

If we assume that gk follows a Poisson distribution then 
ezG z α)1()( −= , where α is the spread in the event size distribution. 
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using λ=0.0083, µ=0.1072, α=25, E(N)=0.103 
 
In fact, as it can be appreciated in Figure 2, the hit distribution is not Poisson. We can approach it much 
better using a Rayleigh or a Landau distribution.  
 
The Rayleigh distribution can be expressed as: 
 

 

Figure 14 Rayleigh distribution 
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The Rayleigh distribution is a continuous pdf. Its Fourier transform can be calculated as 
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after solving this we get 
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the n-iterated derivatives of G(z) are: 
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The z-transform derivatives calculated at z=1 are 

2
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Then expected number of queues in the bulk M/M/1 process is 
 

( )











+

+−
=

2
2

1
22

2
)(

2

πλσµ

σµ
λσπ

µ
λσπ

NE  

Using 
µ

λρ )1('G= , equation (4) can be written as 
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The Raileygh distribution fits much better the data distribution of Figure 9. The parameter σ can be 
calculated using Maximum Likelihood Estimation (MLE) over the data sample. MLE estimation is 
straightforward using Matlab. Table 1shows the MLE values of σ and the mean queue size for the 6 Half 
Pixel Planes in the current example, 

Table 1 

Half Pixel Plane σ̂  Mean XYPC input 
queue size E(N) 

N-1 bend 31.15 4.02 
N-1 non bend 21.64 1.94 
N bend 31.74 4.18 
N non bend 23.50 2.29 
N+1 bend 31.87 4.21 
N+1 non bend 21.97 2.0 

 
 
A 4410 BCO simulation shows that the XYPC queue is empty half of the time and peeks suddenly every 
time a bulk fills it up. Since the bulk interdeparture time is fairly smaller than the bulk interarrival time, the 
queue shows to return to 0 most of the time. The BB33 input queue shows a similar behavior. Figures 15 
and 16 show the simulation of the XYPC and BB33 input queues for plane N-1 non bend. The mean size of 
the XYPC input queue is E(N)= 4.32. The mean size of the BB33 input queue is E(N)=2.83 



PRELIMINARY 09/24/02 
______________________________________________________________________________________ 

 
G.C 16 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 15 XYPC queue size 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16 BB33 Input queue size 
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2.3 The Segment Tracker Architecture 
 
As said in section 1.3.1, the Segment Tracker finds 3-station long inner and outer triplets. The current 
analysis is based on the proposed BB33 algorithm. A detailed description of the BB33 can be found in 
[Ref1] [Ref2]. The Segment Tracker receives input from 6 Half Planes corresponding to the bend and non-
bend views of three consecutive stations in the Pixel Detector. There is a queue associated to each input to 
store the incoming data. We have, also, defined other 7 internal queues for temporary data storage, which 
allows pipelining through the processing modules.  
 

Figure 17: The Segment Tracker Architecture 

 
Each of the first five modules in the BB33 algorithm process entire events of data coming from two 
sources. Here, we associate the word event with all the data generated by a particular section of the Pixel 
Detector (i.e one Half Plane) during one BCO time. As shown in Figure 17, the pixel hits preprocessed by 
the Pixel Preprocessor accumulate in the input queues of the BB33 processing modules. An event is 
processed when the buffer manager of a processing module detects that one event in each of the two input 
queues are complete. The buffer manager of each processing module synchronizes the data streams. The 
buffer managers are not explicitly shown in the block diagram above but are the first function in each 
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processing module. Each processing module produces pixel doublets and projections as results, which are 
used as input for the next processing module. 
 
2.4 Analysis and simulations of the BB33 dataflow 
 
2.4.1 Analysis of the BB33 queues as events in the buffer manager 
 
The data flow of the BB33 algorithm can be analyzed in several ways. We can start with the simplest 
analysis, disregarding the individual pixel hits that accumulate in the input queues and only looking at the 
output of the buffer managers. As said, the buffer managers output a random sequence, which can be 
represented by a Poisson process. The buffer managers store data in the two input queues that they control, 
until they detect that a complete event is in the queue. At that time they issue a “complete event” primitive 
that is used by the processing module to start the event processing. This “complete event” sequence can be 
modeled by a Poisson process. The BB33 algorithm is seen as an open network of queues, where inputs are 
Poisson. The simulation shows that the 5 data mean arrival rates and mean processing times are as specified 
by the following table: 

Table 2 

Pixel Half Plane  Event arrival rate (λi) 
(ev/clk) 

Event service rate 
(ev/clk) 

ρ 

Long Doublet 0.0089 0.0184 0.483 
Triplet 0.0089 0.019 0.468 
N-1 short doublet 0.0089 0.34 0.026 
N short doublet 0.0089 0.33 0.027 
N+1 short doublet 0.0089 0.35 0.025 

 
This means that mean number of queued events in the Long Doublet process is  

( ) 4837.09368.0
1

===
−

=
µ
λρ

ρ
ρ whereRE q  

where ρ is the utilization factor. 
 
We can estimate the average number of hits in the N-1 bend and N bend queues by multiplying the Average 
event size to the result above. 

( ) ( ) ( ) 79.109368.0*11.52* === REEENE qvq  
Figure 18 shows the queue sizes of N-1 bend and N bend planes during a simulation run of 750 BCOs. 

Figure 18 BB33 queue sizes 

--- N-1 bend 
--- N bend 
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The average queue sizes after simulating 4410 BCOs are: 
N-1 bend: 10.94 
N bend: 11.38 
These values reasonable close to the calculated. Note that during the first 159 BCO the queues are empty. 
This is caused by the transitory in the TS-ordering queues, which adds a deterministic latency of 159 
BCOs. 
 
The analysis of the other queues is fairly similar. Figure 19 shows all the queue sizes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: BB33 queue sizes 19.a) Bend and Non-bend Input queue sizes. 19.b) Projection queue sizes. 

 
The average queue sizes are summarized in the following table 
 

Table 3 

Queue size Mean and σ 
Queue Mean σ 
N-1 bend 9.527 11.94 
N-1 non bend 29.73 25.90 
N bend 10.08 12.82 
N non bend 30.23 25.70 
N+1 bend 26.61 21.74 
N+1 non bend 27.99 23.27 
N triplet projection bend  18.03 39.32 
N-1 projection non bend 0.101 0.562 
N projection non bend 0.104 0.570 
N+1 projection non bend 0.102 0.555 

 
 
Although the average queue sizes are relatively small, transitory events may cause high peeks in the queue 
size. For instance, the triplet-projection-queue size in Figure 19.b. shows a high peek around BCO 3500. 
This is caused by consecutive large events of about 25 tracks each accumulating while the module is 
processing also a large event. Since the utilization factor of the module is about 50% the Segment Tracker 
recovers fairly quickly. 
 
Four of the BB33 processing modules (i.e. the triplet and the 3 short doublet processors) perform a very 
similar task to the Long Doublet processor. The main difference is that in each one of these four processing 
modules, one of the queues is the output of a previous processing module in the BB33 algorithm. For 
instance the Triplet processor process data from two queues, the input of one of them is the output of the 
Long Doublet processor. We are interested in the pdf of this input. We can extend the analysis to the Short 
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Doublets as well. For that, we can take the processing modules in pairs. Each pair can be seen as a network 
of queues as shown in Figure 20. 
 
 
 
 
 
 
 
 
 
 

Figur
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the last term of equation (**) is a double summation. If we change variables in the inner summation 
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We can work it out swapping the summations and momentarily fixing j. Then, this last term becomes 
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combining (**) and (***) the equilibrium equations become 
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Equation (****) can be solved for j=fixed but becomes analytically intractable if we try to solve for all j. j 
represents the size of the bulk departing from state k after processing. A good estimation can be achieved 
using the average bulk size and solving for a fixed j=Avg bulk size. 
 
 
The solution to that is shown in the Appendix II. The final equation is, 
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The simulations show that the 6 data individual data streams are Poisson processes with rates as specified 
by the following table 
 

Table 4 

Pixel Half Plane  Queue arrival rate (λi) (hits/clock) 
N-1 non bend 0.1072 
N-1 bend 0.1014 
N non bend 0.1116 
N bend 0.1014 
N+1 non bend 0.1133 
N+1 bend 0.1023 

 
The superposition of two independent Poisson processes is also a Poisson process with arrival rate equal to 
the sum of the individual input rates. The combined arrival rate for stations N-1 bend and N bend at the 
input of Long Doublet processing module is 0.2028 hits/clock. 
 
(write results here) 
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2.4.3 Latency and Processing Times 
 
In this section we analyze Processing Times in each stage of the Pixel Preprocessor and Segment Tracker. 
The Processing Time of a piece of data or the Service Distribution Time in a Processing module determines 
the queue sizes and the utilization factor of each processing stage. 

Table 5 

Pixel Preprocessor 
 Processing Distribution Average Processing Time  
Receiver interface deterministic 2 clocks/hit  
TS-ordering (queue) deterministic 159 BCOs (4452 clocks!)  
TS-ordering (hits) exponential 18.8 clocks/hit  
X-Y translation & grouping Rayleigh 1+Nohits/group = 3.2 clk/hit  

Segment Tracker 
 Processing Distribution Average Processing Time  
Long Doublet Rayleigh: 

1clk+AvgNoQuerys/BCO*(2+Avg
Nomatches/query) 

54.48 clocks/event  

Triplet Rayleigh: 
1clk+AvgNoQuerys/BCO*(2+Avg
Nomatches/query) 

43.87 clocks/event  

Short Doublets Rayleigh: 
1clk+AvgNoQuerys/BCO*(2+Avg
Nomatches/query) 

3.01 clock/event  

    
 
 
We define latency in a specific stage of the Pixel Preprocessor and Segment Tracker modules as the time 
between the arrival of the first hit of a particular event to a stage and the time when that event departs from 
that stage. 
 
The latency in the Pixel Preprocessor and the Segment Tracker is dominated by the sorting time in the TS-
ordering queues. The TS-ordering process adds a fix 2226 clock cycles to the processing of every queue. 
The most delayed hit is the one that arrives first and gives birth to a new queue. Then, other hits with the 
same TS join the same queue. We can see the exponential nature of those arrivals in Figure 22. The 
highlighted area of the figure shows that the latency added by the rest of the modules in the Pixel Processor 
is very small. This latency is represented by the time to the right on the yellow line (i.e. the fix latency line 
of the TS-ordering module). 
 
The mean latency times are 172.22 BCOs and 13.22 BCOs respectively, and the Standard Deviation is 
4.27. 
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Figure 22 Distribution of latency in the Pixel Processor and Segment Tracker 

 
2.5 Data Bandwidth Analysis 
 
This section estimates data bandwidths at several points of the Trigger Architecture showed by Figure XX. 
Those points are indicated by numbers between parentheses.  
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The bandwidth calculations assume the following: 

• The number of highways in the L1 Trigger System is 8. The Pixel Detector Data Combiner Boards 
perform the highway operation. 

• A single Pixel hit is represented by 4 Bytes. 
• A group of N consecutive Pixel hits generated by a single track are represented by 4*N Bytes. 

Although it will, most likely, be implemented using a smaller number of bytes. 
• The Time Stamp extension is adds 2 Bytes to the original TS. 
• A Segment Tracker Triplet is represented by 16 Bytes. 
• There are 56 Segment Trackers per highway. A total of 448 Segment Trackers. 
• The total number of Track and Vertex processors needed is ~ 2500 
• There are 52 6-DSP-Farmlets per highway. Totalizing 416 Farmlets and 2496 processors. 
• The result message from the Farmlet to GL1 is fixed at 50 Bytes in length. 

 
 
 

Total bandwidths 
 1 Highway 8 Highways 
No of BCOs simulated 4410 4410 
(1)  Raw Pixel Data (in pixel hits) 3.32 Ghits/s 26.6 Ghits/s 
(1)  Raw Pixel Data (in Bytes) 13.3 GB/s 106.4 GB/s 
(2) TS Extended Raw Pixel Data to L1 Buffer 3.32 Ghits/s 26.6 Ghits/s 
(2) TS Extended Raw Pixel Data to L1 Buffer 19.95 GB/s 159.6 GB/s 
(3) Triplet Data out of Segment Tracker 153.8 Mtriplets/s 1.23 Gtriplets/s 
(3) Triplet Data out of Segment Tracker 2.46 GB/s 19.68 GB/s 
(4) Triplet Data out of Switch 153.8 Mtriplets/s 1.23 Gtriplets/s 
(4) Triplet Data out of Switch 2.46 GB/s 19.68 GB/s 
(5) DSP Results to L1 Buffer (in No messages) 0.947 Million/s 7.57Million/s 
(5) DSP Results to L1 Buffer (in Bytes) 200 MB/s 1.5 GB/s 
(6) DSP Results to GL1 (in No messages) 0.947 Million/s 7.57Million/s 
(6) DSP Results to GL1 (in Bytes) 47.4 MB/s 378.5 MB/s 
   

Individual Bandwidths 
 Single Link 
(1) Half Plane, Highwayed Raw Pixel Data Input to Pixel Processor (in Bytes) 110.87 MB/s 
(3) Single Segment Tracker Triplet Data Output 43.94 MB/s 
(4) Single Switch output to Farmlet 47.3 MB/s 
(5) Single Farmlet to L1 buffer output bandwidth 3.64 MB/s 
(6) Single Farmlet to GL1 output bandwidth 0.91 MB/s 
  
 
Note: The Individual Bandwidth information does not necessarily imply a one to one relationship with a 
physical link. Although it may be convenient in some cases. 
 
 
2.6 Data Throttling 
 
The L1Trigger, and the whole BTeV readout-DAQ system, is "data push”. This concept implies that the 
data is pushed forward from one stage to the next without any handshaking mechanism between interfacing 
stages. In other words the stage downstream in the readout process must be able to deal with the data that is 
being pushed by the previous stage at all times. However, this does not mean that the stages must supply 
infinite data queuing or infinite processing bandwidth, but it means that they must deal with eventual 
buffering or processing overflows. The way to deal with this problem is by throttling the data stream to 
reduce queue sizes and processing load. A well-implemented throttle must handle data inefficiency 
gracefully. The data flow analysis and simulations allow us to make some observations about throttling. 
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2.6.1 Instantaneous data rate 
 
The L1 Trigger stages must deal with data rate fluctuations. The L1 Trigger stages will be designed to 
handle the average processing capacity calculated plus a safety margin. The buffers or queues will provide 
the temporary storage to allow the processors to deal with high data rate fluctuations. The current 
simulation of about 5000 events (see Figure XX below) shows for a typical queue maximum-to-average 
ratio size of 7 or 8 times. This value is not exaggeratedly large but may increase for longer simulations. 
 
The data set used for the current data flow simulations does not consider many of the spurious effects that 
can increment the instantaneous data rate such us Pixel Detector failures and oscillations, etc. 
 

 
2.6.2 Data Throttling 
 
Every stage of the Pixel Readout and L1 Trigger must implement simple cut mechanisms to detect and 
discard events that are not interesting for processing. The benefit is double if many of these spurious events 
are also large or require a long processing time. The system must keep record of occurrence of these events. 
Eventually, these events must be available for diagnosis. 
 
There will be no feedback signals indicating an upstream stage to throttle data. The stage needing the 
throttle must be able to implement its own. 
 
 
2.6.3 Data Throttling in the Pixel Preprocessor 
 
A typical case of data loss (not necessarily due to high data rate) but causing the same effect is due to data 
that arrives late to the TS ordering queues. These data must be discarded for processing. The data can join a 
queue of rejected or leftover event pieces. Their occurrence can be reported through the PTSM. 
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The Pixel Preprocessor could be able to implement data cuts based on high pixel count, large pixel groups, 
number of tracks per event, etc. 
 
 
2.6.4 Data Throttling in the Segment Tracker 
 
The processing time in the Segment Tracker is proportional to the number of Pixel Hits and the number of 
matching point that make a segment. Large events are likely to take longer. The Segment Tracker must be 
able to throttle events when queues are full. 
 
2.6.5 Data Throttling in the Processor Farmlet 
 
The Buffer Manager is responsible for data throttling in the Farmlet. Data throttling can be induced by two 
factors, an increase in the input data rate or a decrease of the processing capacity of the Farmlet due to a 
Processor failure. This topic will be analyzed in particular in a separate document. 
 
3 Conclusions 
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